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Abstract. We investigate the nature of the vibrational modes of a random binary harmonic
chain with site correlation for which an annealing temperatureT is used as a disorder controlling
parameter. In the low-temperature regime one finds that the localization lengthLc does not scale
with T like the mean cluster sizeξa ∝ ea/T but follows a power law scaling. Furthermore,
the power law exponent varies continuously with the mode frequency. As a function of both
the frequency and temperature, the localization length curves can all be collapsed down to a

universal function of the frequency, namelyf (ω) = Lc(ω, T )T (µ1+µ2ω2), with µ1 = 2.1 ± 0.1
andµ2 = 1.1 ± 0.1.

The effect of disorder in an otherwise crystalline system has been the subject of extensive
studies since Anderson’s [1] seminal work on localization in 1958. For intermediate disorder
a three-dimensional (3D) system may undergo a metal–insulator transition (MIT) at a critical
energy called the mobility edge [2] which separates a metal from an insulator. More recently
it has been shown [3] that close to the MIT the electronic wave functions show spatial
multifractal behaviour. In this case the singularity spectrum does not depend either on the
energy or on the disorder.

The interest in the transport properties of 1D systems exhibiting correlated disorder has
also grown in the last few years [4–9]. Such systems basically consist of a distribution of
defects placed randomly amongst an otherwise crystalline host system in such a way that
the distribution exhibits some kind of spatial correlation. The very existence of extended
states violates Anderson’s [1, 10] rule, according to which the electron states for 1D on-site
disordered systems should be localized even for an infinitesimal amount of disorder.

Correlation seems to be an essential key for electronic delocalization in 1D. In practice
one usually randomly distributes the parameters amongst the lattice sites in such a way that,
for a given site, their values depend on the corresponding neighbouring values to within a
correlation length. In a binary tight-binding model for example, one can assign the on-site
energies randomly to pairs of sites forming the so called random dimer model (RDM). The
correlation is then implicit in the internal symmetry of the structure of the dimers with
the delocalized states appearing as the resonant modes of such structures. However, as
recently shown [11], the internal symmetry of the clusters is not a necessary condition to
produce near-resonant non-scattered modes. Another point is that delocalization is not only
associated with correlated on-site energies. Disordered chains with correlated off-diagonal
interactions [8, 9] and a nonlinear random binary alloy modelled by a discrete nonlinear
Schr̈odinger equation [12] have also been reported to display delocalized states. In the RDM
model

√
N of the electronic stationary states are extended throughout the whole lattice. The

large number of extended electronic states associated to these systems, may alter its transport
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properties, possibly leading to the discovery of new materials with significant technological
applications.

Since the 1D harmonic chain can be mapped onto a tight-binding model of an electronic
system almost all normal vibrational modes are localized in the 1D disordered harmonic
chain [13]. These systems have been shown [14, 15] to behave like a pure chain at the
frequencyω = 0 once this mode represents the uniform translational motion of the entire
chain. Matsuda and Ishii [14] showed that in such systems a few low-frequency modes are
not localized and that the number of such modes is of the order of

√
N . Correlations are

generally introduced in the masses which are distributed randomly except by the fact that a
given mass value only appears in pairs. One could also consider all the masses equal and
let the spring constants take on two values, one of which is distributed in pairs, i.e. in a
dimer-like fashion. The cluster distribution, however, is usually considered to be completely
uncorrelated.

In this work we introduce thermally controlled correlations amongst the sites of a random
binary harmonic chain and carry out a numerical study of the nature of its normal vibrational
modes. This is done by allowing for a short-range interaction between the sites with the
thermal equilibrium achieved at an annealing temperatureT . This is the parameter that
controls the correlation, allowing us to continuously move from a completely uncorrelated
site distribution to a correlated one. Thermally controlled correlations reduce the degree of
disorder thus leaving room for more delocalized modes to appear. A characteristic length
suitable for determining the degree of localization is the inverse participation numberLc,
defined below. Unexpectedly one finds that, in the regime of small temperatures,Lc does
not follow the same exponential scaling law with temperature as the mean cluster size. It
actually displays a power law behaviour with frequency-dependent exponents. As a matter
of fact, one finds that allLc versusω2 curves can be collapsed down to a universal function
of the frequency, namelyLc(ω, T )T (µ1+µ2ω

2), with µ1 = 2.1 ± 0.1 andµ2 = 1.1 ± 0.1.
The equation of motion for a one-dimensional array of atoms with masses{mi} coupled

by harmonic springs with the frequencyω is written as

(βi−1 + βi − ω2mi)ui = βi−1ui−1 + βiui+1. (1)

Here βi is the spring constant of theith spring that couples together the two massesmi

and mi+1. ui is the Fourier transform of the amplitude of vibration of theith mass. In
what follows we shall considerβi = 1 and assume that the masses can take on only two
values, namelyma and mb. The chain is then composed of typeA sites containing one
atom of massma and typeB sites containing one atom of massmb. This is called the
binary harmonic chain model.

In order to introduce a correlated site distribution we allow for a site interaction through
a first-neighbour symmetric pair potential such that the energy of a given pair configuration
is given by

E(AA) = E(BB) = −ε0 (2)

E(AB) = E(BA) = ε0. (3)

The distribution of sitesA andB over the chain is then obtained by following an annealing
process. We start by randomly classifying the sites in typesA and B with a fixed
concentrationρ of sites B. The thermal equilibrium at temperatureT is achieved by
letting the site distribution evolve under the following dynamical rules: (a) if a given site is
between two different types of sites it will remain as it is since, according to equations (2)
and (3),E(AAB) = E(ABB) = 0; (b) the probabilityp of a given site being between like
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sites obeys a Boltzmann distribution

p = p(AAA) = p(BBB) = e1/T /(e1/T + e−1/T ) (4)

where T is the temperature measured in units of 2ε0/kB . In order to satisfy the above
probability distribution a given site with two equal neighbours becomes a like site with
probability p. In practice one must allow the concentrationρ to fluctuate betweenρ ± 1ρ

with 1ρ � ρ, and the last step is realized only if this constraint is not violated. The random
initial site distribution is then allowed to evolve over a large time interval under the above
dynamical rules and the distribution is quenched once thermal equilibrium is achieved. The
annealing temperature can then be used as a disorder controlling parameter. As a matter of
fact one gets a completely random site distribution for largeT whereas phase separation is
observed asT approaches zero (ε0 > 0). For the sake of completeness we checked that the
mean cluster sizeξa scales with the temperature as logξa ∝ 1/T for very low temperature.
The degree of localization of the vibrational modes can be measured by computing the
inverse participation number defined as

Lc(ω
2, T ) =

N∑
i=1

u2
i

/ N∑
i=1

u4
i (5)

for the range of frequencies lying inside the common band of the constituent atoms.
In what follows we give the results obtained for the particular casema = 1 andmb = 2,

with ρ = 0.30. In this case the common band is in the range 06 ω2 6 2 [16, 17]. The
total number of sites used in our simulation wasN = 5000, and we performed 5000 runs
over the entire chain in order to achieve thermal equilibrium. The localization length was
obtained by averaging over 100 configurations of the final quenched site distribution.

Figure 1 shows the localization length as a function of the squared frequency for several
values of the annealing temperature. One observes the existence of the delocalized pure
mode at theω = 0 resonant frequency and a general increase ofLc with decreasing
correlation (increasing temperature), as expected. One also notices that the thermal
correlations do not lead to the emergence of any new resonant frequency, contrary to
the behaviour of models in which correlations are introduced by allowing the sites to have
an fixed internal structure [8, 9, 14, 15]. At the upper band edge the localization length
becomes small, and above this frequency the vibrational modes exhibit an exponential decay
in the large mass sites.

We investigated the behaviour ofLc with temperature for several values of the mode
frequency. It was found thatLc exhibits a power law increase in the low-temperature regime
of the formLc ∝ T −ν , with the exponent showing a roughly linear dependence onω2. In
figure 2 we plotLc(ω

2, T )T (µ1+µ2ω
2) versusω2 in a linear-log scale for several values of the

annealing temperature. According to our numerical estimates the temperature exponent that
better characterizes the curve collapsing occurs forµ1 = 2.1±0.1 andµ2 = 1.1±0.1. This
shows that, as a function of both the frequency and temperature,Lc follows a universal curve
of the frequency, apart from a slight deviation at the edges of the common band. Therefore
the localization length does not follow an exponential scaling law with the temperature as
would be expected from the scaling behaviour of the correlation lengthξa ∝ ea/T .

In conclusion, we studied the nature of the normal vibrational modes of a random
binary harmonic chain with site correlations introduced through an annealing process. We
showed that the localization length exhibits the expected trend, i.e. it generally increases
with decreasing annealing temperature. However, we obtained that the mean cluster size and
the localization length increase with decreasing temperature following quite distinct laws,
with the latter exhibiting a power law increase with frequency-dependent critical exponents.
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Figure 1. Localization lengthLc(ω
2, T ) versusω2 for T = 0.2, T = 0.25, T = 0.3, T = 0.35

and T = 0.5. Notice that the localization length generally increases with decreasing disorder,
i.e. decreasing temperature.

Figure 2. Linear-log plot ofLc(ω
2, T )T (µ1+µ2ω2) versusω2 for several values of the annealing

temperature. The temperature exponent used for the curve collapsing wasµ1 = 2.1 ± 0.1 and
µ2 = 1.1 ± 0.1. Notice that the collapsing breaks down at the common band edges and higher
temperatures.

This result is quite intriguing and it would be interesting to obtain it on analytical grounds.
An extension of a recently proposed local functional integral approach to the problem of
diffusion and localization in random media can possibly be used to obtain the scaling laws
in systems with correlated disorder [18]. Further investigation must be pursued in order to
determine the role played by the system parameters, such as the concentration and mass
relation, in the above scaling law. Work in this direction is currently in progress.

This work was partially supported by CNPq and FINEP (Brazilian agencies).
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